

A biorefinery approach to exploit digestate as key feedstock in the energy – nutrient nexus

Task 1.2 – Evaluation of post-digestion under high organic loading rate

Subtask 1.2.1 - Batch screening of post-digestion vs. recirculation

Objective

Lab-scale batch biomethane potential (BMP) assays are employed to compare the potential of postdigestion vs. recirculation of (N-stripped) digestate in terms of residual biogas/bio-methane output. The project's objective is to obtain min. 10 - 20% higher biogas yield.

Set-up

The standardised reactors (Figure 1) are operated acc. to Holliger et al $(2016)^1$, in biological triplicates. Raw digestate (RD) from a full-scale digester (i.e., reference material) and air-stripped RD from *Task 2.1* is used. The effect of the reduced N-content and increased bioavailable organic fractions by applying different stripping conditions is tested.

Figure 1: BMP assay set-up, top view

The influent and effluent streams are characterized. Although high OLRs cannot be tested in batch assays, they give valuable insights in the influence of stripping on digestate degradability and post-AD vs. recirculation.

¹ DOI: 10.2166/wst.2016.336

Results

The influent streams (i.e., fresh manure, raw digestate and stripped digestate) are characterized for pH, TAC, FOS, (V)TS, TC, soluble TOC, TN and TAN. The results of these analyses are shown depicted in Table 1. The N-removal and disintegration efficiency of almost 90% give a "go" to initiate the BMP assays.

Parameter	Fresh manure	Digestate	Stripped digestate	Difference due to stripping
рН (-)	6,42	7,64	8,75	
TAC (g/L)	6,39 ± 0,09	13,7 ± 0,07	7,03 ± 0,02	
FOS (g/L)	8,17 ± 0,13	3,18 ± 0,47	3,40 ± 0,34	
TS (g/kg)	83,34 ± 3,02	56,16 ± 0,21	73,72 ± 0,50	+ 31%
VS (% of TS)	84,4 ± 0,59	75,22 ± 0,14	73,87 ± 0,63	
TC (g C/kg)	32,91 ± 1,76	19,71 ± 1,07	25,87 ± 1,92	
Soluble TOC (g/L)	8,84	4,62	8,63	+ 87%
TN (g N/kg)	4,95 ± 0,04	3,97 ± 0,10	1,98 ± 0,08	
TAN (g/kg)	2,86 ± 0,05	2,92 ± 0,09	0,32 ± 0,03	- 89%
C/N	6,65	4,96	13,02	

Table 1: characterisation of the fresh manure and the digestate before and after stripping

TI 0140	Table 2: batch digestion – evaluation post-digestion vs. recirculatio		
The BMP assays show hardly any	Description	mL biogas/g VS _{fed}	% CH4
difference in biogas (methane) yield for			
the recirculation of the stripped digestate	Post-AD, no stripping	103 ± 16	54 ± 2,2
compared to the non-stripped digestate. Recirculating 10, 25 and 50% stripped	Post-AD, with stripping	195 ± 15	53 ± 1,5
digestate results in an extra biogas	RR10%, no stripping	290 ± 9,0	55 ± 0,13
production of 0, 3 and 9%, respectively. Post-digestion of stripped digestate	RR10%, with stripping	288 ± 7,9	54 ± 0,90
results in significantly higher methane	RR25%, no stripping	269 ± 10	54 ± 0,51
yield (+ 88%) compared to the non- stripped digestate.	RR25%, with stripping	276 ± 9,4	53 ± 0,95
	RR50%, no stripping	243 ± 18	53 ± 1,3
	RR50%, with stripping	266 ± 13	53 ± 1,6

Conclusions

The targeted additional biogas production (10 -20%) is not achieved when recirculating stripped digestate to the anaerobic digester. In post-digestion, on the other hand, an 88% increase in biogas production was observed.

Contact: Prof. Lise Appels <u>lise.appels@kuleuven.be</u>

More information about the project: check out the project website.

Project partners: Biogas-E, KU Leuven, Ghent University, Marmara University, VCM, OSTIM

With the support of:

